
| Aug 2014| © 2012 UPES
1

Programming with C - Arrays & Pointers

P S V S Sridhar

Assistant Professor, Centre for Information Technology, University of Petroleum & Energy Studies,

Dehradun

© 2012 UPES Aug 2014 Aug 2014

2

Definition – Array

 A collection of objects of the same type stored

 contiguously in memory under one name

► Group of consecutive memory locations

► Same name and type

 To refer to an element, specify

► Array name

► Position number

 Format:
arrayname[position number]

► First element at position 0

► n element array named c:

– c[0], c[1]...c[n – 1]

Name of array

(Note that all

elements of this

array have the

same name, c)

Position number

of the element

within array c

c[6]

-45

 6

 0

 7

2

 -89

 0

 6

2

 1

 645

3

7

c[0]

 c[1]

 c[2]

 c[3]

c[11]

c[10]

c[9]

c[8]

c[7]

c[5]

c[4]

© 2012 UPES Aug 2014 Aug 2014

3

Examples

 int A[10]

– An array of ten integers

– A[0], A[1], …, A[9]

 double B[20]

– An array of twenty long floating point numbers

– B[0], B[1], …, B[19]

 Arrays of structs, unions, pointers, etc., are also

allowed

 Array indexes always start at zero in C

© 2012 UPES Aug 2014 Aug 2014

4

Examples (continued)

 int C[]

– An array of an unknown number of integers

(allowable in a parameter of a function)

– C[0], C[1], …, C[max-1]

 int D[10][20]

– An array of ten rows, each of which is an array of

twenty integers

– D[0][0], D[0][1], …, D[1][0], D[1][1], …,

D[9][19]

© 2012 UPES Aug 2014 Aug 2014

5

Array Element

 May be used wherever a variable of the same type may be used

– In an expression (including arguments)

– On left side of assignment

 Examples:–

A[3] = x + y;

x = y – A[3];

z = sin(A[i]) + cos(B[j]);

© 2012 UPES Aug 2014 Aug 2014

6

Array Elements (continued)

 Generic form:–

– ArrayName[integer-expression]

– ArrayName[integer-expression] [integer-

expression]

►Same type as the underlying type of the array

 Definition:– Array Index – the expression between the square

brackets

© 2012 UPES Aug 2014 Aug 2014

7

Array Elements (continued)

 Array elements are commonly used in loops

 E.g.,

for(i=0; i < max; i++)

A[i] = i*i;

sum = 0; for(j=0; j < max; j++)

sum += B[j];

© 2012 UPES Aug 2014 Aug 2014

8

Declaring Arrays

 Static or automatic

 Array size determined explicitly or implicitly

 Array size may be determined at run-time

– Automatic only

© 2012 UPES Aug 2014 Aug 2014

9

Declaring Arrays (continued)

 Outside of any function – always static

int A[13];

#define CLASS_SIZE 73

double B[CLASS_SIZE];

const int nElements = 25

float C[nElements];

© 2012 UPES Aug 2014 Aug 2014

10

Array Initialization

 int A[5] = {2, 4, 8, 16, 32};

– Static or automatic

 int B[20] = {2, 4, 8, 16, 32};

– Unspecified elements are guaranteed to be zero

 int C[4] = {2, 4, 8, 16, 32};

– Error — compiler detects too many initial values

 int D[5] = {2*n, 4*n, 8*n, 16*n, 32*n};

– Automatically only; array initialized to expressions

 int E[n] = {1};

– Dynamically allocated array (automatic only). Zeroth element
initialized to 1; all other elements initialized to 0

© 2012 UPES Aug 2014 Aug 2014

11

Implicit Array Size Determination

 int days[] = {31, 28, 31, 30, 31,

30, 31, 31, 30, 31, 30, 31};

► Array is created with as many elements as initial

values

– In this case, 12 elements

© 2012 UPES Aug 2014 Aug 2014

Multiple-Subscripted Arrays

• Multiple subscripted arrays

– Tables with rows and columns (m by n

array)

– Like matrices: specify row, then column

Row 0

 Row 1

 Row 2

Column 0

Column 1

Column 2

Column 3

 a[0][0]

a[1][0]
 a[2][0]

a[0][1]
 a[1][1]
 a[2][1]

a[0][2]
 a[1][2]
 a[2][2]

a[0][3]
 a[1][3]
 a[2][3]

Row subscript

Array name

Column subscript

© 2012 UPES Aug 2014 Aug 2014

6.9 Multiple-Subscripted Arrays

• Initialization

– int b[2][2] = { { 1, 2 }, { 3, 4 } };

– Initializers grouped by row in braces

– If not enough, unspecified elements set to zero

int b[2][2] = { { 1 }, { 3, 4 } };

• Referencing elements

– Specify row, then column

printf("%d", b[0][1]);

1 2

3 4

1 0

3 4

© 2012 UPES Aug 2014 Aug 2014

Character Arrays

When initializing a character array in ANSI C, the compiler will allow us to declare the
array size as the exact length of the string constant.
 Char string[3] = “xyz”;

 Character arrays

► String “first” is really a static array of characters

► Character arrays can be initialized using string literals

char string1[] = "first";

– Null character '\0' terminates strings

– string1 actually has 6 elements

• It is equivalent to

char string1[] = { 'f', 'i', 'r', 's', 't', '\0' };

► Can access individual characters

string1[3] is character „s‟

© 2012 UPES Aug 2014 Aug 2014

Reading Strings from Terminal

 Using Scanf

char address[10];

scanf(“%s”, address);

Terminates its input on the first white space

scanf(―%ws‖, name); // w is width of word

scanf(“%[^\n]”,line); // accept white spaces also

char ch;

ch = getchar(); // accept single character

© 2012 UPES Aug 2014 Aug 2014

 main()

 char line[81], character;

 int c=0;

 do

 {

 character = getchar();

 line[c] = character;

 c++;

 } while (character != ‗\n‘);

Reading Strings from Terminal

© 2012 UPES Aug 2014 Aug 2014

 gets(str); //accept string until a new line character is encountered

 Eg. char line[80];

 gets (line);

 printf(―%s‖,line);

Reading Strings from Terminal

© 2012 UPES Aug 2014 Aug 2014

What is a pointer variable?

• A pointer variable is a variable whose value is the

address of a location in memory.

• To declare a pointer variable, you must specify the type

of value that the pointer will point to, for example,

int* ptr; // ptr will hold the address of an int

char* q; // q will hold the address of a char

© 2012 UPES Aug 2014 Aug 2014

Using a Pointer Variable

 int x;

 x = 12;

 int* ptr;

 ptr = &x;

NOTE: Because ptr holds the address of x,

 we say that ptr “points to” x

 2000

 12

 x

3000

 2000

 ptr

© 2012 UPES Aug 2014 Aug 2014

 int x;

 x = 12;

 int* ptr;

 ptr = &x;

 *ptr = 5;

Using the Dereference Operator

 2000

 12

 x

3000

 2000

 ptr

5

// changes the value at the

 address ptr points to 5

© 2012 UPES Aug 2014 Aug 2014

 char ch;

 ch = „A‟;

 char* q;

 q = &ch;

 *q = „Z‟;

 char* p;

 p = q;

Self –Test on Pointers

 4000

 A

 ch

5000

 4000

 q

Z

6000

p

4000

// the rhs has value 4000

// now p and q both point to ch

© 2012 UPES Aug 2014 Aug 2014

 ptr

Pointers into Arrays

‘H‟ „e‟ „l‟ „l‟ „o‟ „\0‟

char msg[]

=“Hello”;

char* ptr;

ptr = msg;

*ptr = „M‟ ;

ptr++;

*ptr = „a‟;

msg

3000

3000

‘M‟ ‘a‟

3001

© 2012 UPES Aug 2014 Aug 2014

Pointers and Constants

• char s[] = ―Hello‖;

• const char* pc = s; // pointers to constant

• pc[3] = ‗g‘; // error

• pc = p; // ok

© 2012 UPES Aug 2014 Aug 2014

24

Declaring Pointers in C

int *p; — a pointer to an int

double *q; — a pointer to a double

char **r; — a pointer to a pointer to a

 char

 type *s; — a pointer to an object of

 type type

© 2012 UPES Aug 2014 Aug 2014

25

Pointer Arithmetic

 int *p, *q;

q = p + 1;

► Construct a pointer to the next integer after *p and assign it to q

 long int *p, *q;

p++; q--;

► Increment p to point to the next long int; decrement q to point to

the previous long int

 float *p, *q;

int n;

n = p – q;

► n is the number of floats between *p and *q; i.e., what would be

added to q to get p

© 2012 UPES Aug 2014 Aug 2014

Pointers & arrays

 Arrays and pointers are closely related in C

►In fact, they are essentially the same thing!

►Esp. when used as parameters of functions

int A[10];

int *p;

►Type of A is int *

►p = A; and A = p; are legal assignments

►*p refers to A[0]
*(p + n) refers to A[n]

►p = &A[5]; is the same as p = A + 5;

© 2012 UPES Aug 2014 Aug 2014

Arrays and Pointers (continued)

 double A[10]; vs. double *A;

Only difference:–

► double A[10] sets aside ten units of memory, each

large enough to hold a double

► double *A sets aside one pointer-sized unit of

memory

– You are expected to come up with the memory elsewhere!

► Note:– all pointer variables are the same size in any

given machine architecture

– Regardless of what types they point to

© 2012 UPES Aug 2014 Aug 2014

Note

 C does not assign arrays to each other

 E.g,

►double A[10];

double B[10];

A = B;

– assigns the pointer value B to the pointer value A

– Contents of array A are untouched

© 2012 UPES Aug 2014 Aug 2014

Pointers & Functions

This method called as call by reference

#include<stdio.h> /*The function calls is Call by Reference*/

#define pi 3.14

void area_perimeter(float, float *, float *);

int main()

{

 float r, a, p;

 printf(“Enter the radius\n”);

 scanf(“%f”,&r);

 area_perimeter(r,&a,&p);

 printf(“The area = %8.2f, \n The Perimeter = %8.2f”, a, p);

 return 0;

}

© 2012 UPES Aug 2014 Aug 2014

Pointer & Functions

void area_perimeter(float x, float *aptr, float

*pptr)

{

 *aptr = pi*x*x;

 *pptr = 2.0*pi*x;

}

© 2012 UPES Aug 2014 Aug 2014

Passing an Arrays to Function

 When an array is passed to a function what is actually passed is its initial elements location

in memory. i.e., the address of an initial element

main()

{

 char str[20];

 int len;

 gets(str);

 len = stringlen(str);

 printf(―%d‖, len);

}

int stringlen(char *s)

{ char *p = s;

 while(*p != ‗\0‘)

 p++;

 return p-s;

}

© 2012 UPES Aug 2014 Aug 2014

Dynamic Memory Allocation (Malloc, Calloc, Sizeof,
Free)

C provide the concept of dynamic memory

allocation to allocate memory space for variable at

run time.

C allows users to dynamically allocate memory by

malloc() and calloc() functions

 sizeof() which determines how much memory a

specified variable

 free() de-allocates the memory assigned to a

variable

© 2012 UPES Aug 2014 Aug 2014

sizeof()

struct date

{

int hour;

int minute;

int second;

};

int x;

x = sizeof(struct date);

x now contains the information required by calloc()

© 2012 UPES Aug 2014 Aug 2014

Malloc()

 This function is used to allocate storage to a variable while the program

is running.

 This function takes an argument that specifies the size of each element

in bytes.

 The function returns a character pointer to the allocated storage, which is

initialized to zero

struct date *date_pointer;

date_pointer = (struct date *) malloc sizeof(struct date);

The (struct date *) is a type cast operator which

converts the pointer returned from malloc to a

character pointer to a structure of type date.

© 2012 UPES Aug 2014 Aug 2014

Calloc()
  This function is also used to allocate storage to a variable while the

program is running.

 This function takes two arguments that specify the number of elements

to be reserved.

 The size of each element obtained from sizeof()

 The function returns a character pointer to the allocated storage, which is

initialized to zero

struct date *date_pointer;

date_pointer = (struct date *) calloc(20, sizeof(struct date);

The above function call will allocate size for

twenty such structures, and date_pointer will

point to first in the chain.

© 2012 UPES Aug 2014 Aug 2014

Free()

 When variables are no longer required, the memory will be released

by free()

 free(date_pointer);

© 2012 UPES Aug 2014 37

