
| Aug 2014| © 2012 UPES

PROGRAMMING WITH C -
CONTROL FLOW &

FUNCTIONS

© 2012 UPES Aug 2014 Aug 2014

CONDITIONAL STATEMENTS

 Which provide the condition to execute a block.

 If statement

 If else statement

Else if statement or nested if else statement

Switch statement

Break statement

Continue statement

Goto statement

2

© 2012 UPES Aug 2014 Aug 2014

If statement

 The if conditional statement is used to provide the selection control

structure that execute a set of statements based on a condition.

 if (condition)

 {

 set of statements;

}

Ex:

if (marks < 30)

{

 printf(“Sorry… You fail\n”);

3

© 2012 UPES Aug 2014 Aug 2014

The if else statement

 If else conditional statement is used to select any one set of statements

between two sets of statements.

 if (condition)

 {

 set of statements;

 }

 else

 {

 another set of statements;

 }

 next statement;

4

© 2012 UPES Aug 2014 Aug 2014

 Ex:

 if (marks < 30)

 {

 printf(“ Sorry … You fail”);

 printf(“Good luck in the supplementary”);

 }

 else

 {

 printf(“Congrats .. You pass”);

 }

5

The if else statement

© 2012 UPES Aug 2014 Aug 2014

The else if statement or nested if else

 else if statement is used for the multi way decision based on several conditions.

 if (condition 1)

 {

 set of statements(1);

 }

 else if (condition 2)

 {

 set of statements(2);

 }

 ………

 else if (condition n)

 {

 set of statement – n;

 }

 else

 {

 set of statements – x;

 }

6

© 2012 UPES Aug 2014 Aug 2014

 if (marks >= 75)

 printf(“passed with grade A \n”);

else if (marks >= 60)

 printf(“passed with grade B \n”);

else if (marks >= 45)

 printf(“passed with grade C \n”);

else

 printf(“fail”);

7

The else if statement or nested if else

© 2012 UPES Aug 2014 Aug 2014

The switch Statement

 The switch statement is another form of the multi way decision statements.

 switch(var)

 {

 case value1:

 statements;

 break;

 case value2:

 statements;

 break;

 default:

 statements;

 }

 8

© 2012 UPES Aug 2014 Aug 2014

 switch(c)

 {

 case 'A': capa++;

 case 'a': lettera++;

 default : total++;

 }

9

The switch Statement

© 2012 UPES Aug 2014 Aug 2014

Break, Continue, Goto statements

 The continue statement provides a convenient way to force an

immediate jump to the loop control statement. The break statement

terminates the execution of the loop.

 Goto statement for unstructured jumps. It is very rarely recommended.

 statements;

 goto flagname;

 statements;

 flagname:

 statements;

10

© 2012 UPES Aug 2014 11

Loop Construct…

A loop causes a section of a program to be repeated
a certain number of times.

The repetition continues while the condition set for it
remains true.

When the condition becomes false, the loop ends
and the control is passed to the statement
following the loop.

for loop

while loop

do .. while loop

© 2012 UPES Aug 2014 12

for loop

The for loop is usually used when the number of
iterations is predetermined.

 for (expr1;expr2;expr3)

 {
 s1;
 s2 ;
 }

1. expr1 is executed only once before looping.

2. expr2 is a Boolean expression. If not given, it is assumed to be true.

3. If expr2 is false, the loop is terminated.

4. After execution of the repeat section, expr3 is executed

5. The expressions expr1, expr2 and expr3 are all optional.

© 2012 UPES Aug 2014 Aug 2014

for loop

 #include <stdio.h>

main()

 {

 int i,n = 5;

 for(i = 0; i < n; i = i+1)

 {

 printf("the numbers are %d \n",i);

 }

 }

13

© 2012 UPES Aug 2014 Aug 2014

while loop

 while statement lets you repeat a statement until a specified

expression becomes false.

 while (expression) statement

 #include<stdio.h>

main()

 {

 int i = 0;

 while (i<5)

 {

 printf(" the value of i is %d\n", i);

 i = i + 1;

 }

}

14

© 2012 UPES Aug 2014 Aug 2014

do while loop

 do-while statement lets you repeat a statement or compound statement

until a specified expression becomes false.

 do statement while (expression) ;

 do

 {

 y = x ;

 x--;

 } while (x > 0);

 15

© 2012 UPES Aug 2014 16

Comparison… Comparison…

Evaluate

 Condition

Evaluate

Conditio

n

Execute body

of loop

Execute body

of loop

False

do while

False

True

while

True

© 2012 UPES Aug 2014 17

Knowing prefix & postfix…

Eg: Prefix= ++ivar;

int var1=10;

var1=++var1;

 This will be translated as:

int var1=10;

var1= var1 + 1;

var2=var1;

 Result is both var1 & var2 are set to
11.

• Eg: Postfix= ivar++;

• int var1=10;

• var1=var1++;

• This will be translated as:

• int var1=10;

• var2=var1;

• var1= var1 + 1;

• Result is var1 is set to 11, &
var2 is set to 10.

© 2012 UPES Aug 2014 Aug 2014

Functions

18

A function receives zero or more parameters, performs a specific
task, and returns zero or one value.

A function is invoked by its name and parameters.

No two functions have the same name in your C program.

The communication between the function and invoker is
through the parameters and the return value.

A function is independent:

It is “completely” self-contained.

It can be called at any places of your code and can be ported
to another program.

Functions make programs reusable and readable.

© 2012 UPES Aug 2014 Aug 2014
19

Function Prototype

Function prototypes are always declared at the
beginning of the program indicating the name of
the function, the data type of its arguments
which is passed to the function and the data
type of the returned value from the function.

© 2012 UPES Aug 2014 20

Syntax

Function Prototype:
return_type function_name (type1 name1, type2 name2,

 ..., typen namen);

Function Definition:
return_type function_name (type1 name1, type2 name2,

 ...,typen namen)

{

statements...

}

Syntax

Function header

The parameters

© 2012 UPES Aug 2014 21

Some Examples

Function Prototype Examples

double squared (double number);

void print_report (int);

int get _menu_choice (void);

Function Definition Examples

double squared (double number)

{

 return (number * number);

}

void print_report (int report_number)

{

 if (report_nmber == 1)

 printf(“Printer Report 1”);

 else

 printf(“Not printing Report 1”);

 }

© 2012 UPES Aug 2014 22

Passing Arguments

Function call:

 func1 (a, b, c);

Function header

 int func1 (int x, int y, int z)

Each argument can be any valid C expression that has a

value:

For example:

 x = func1(x+1,func1(2,3,4),5);

Parameters x y z are initialized by the value of a b c

Type conversions may occur if types do not match.

© 2012 UPES Aug 2014 23

Parameters are Passed by Value

All parameters are
passed by value!!

This means they are

basically local

variables initialized to

the values that the

function is called with.

They can be modified

as you wish but these

modifications will not

be seen in the calling

routine!

#include<stdio.h>

int twice(int x)

{

 x=x+x;

 return x;

}

int main()

{

 int x=10,y;

 y=twice(x);

 printf("%d,%d\n",x,y);

}

© 2012 UPES Aug 2014 24

Returning a Value

To return a value from a C function you must explicitly
return it with a return statement.

Syntax:

return <expression>;

The expression can be any valid C expression that

resolves to the type defined in the function header.

Type conversion may occur if type does not match.

Multiple return statements can be used within a single

function (eg: inside an “if-then-else” statement…)

© 2012 UPES Aug 2014 25

Local Variables

Local Variables

 int func1 (int y)

{

 int a, b = 10;

 float rate;

 double cost = 12.55;

}

Those variables declared “within” the function are considered
“local variables”.

They can only be used inside the function they were declared in,
and not elsewhere.

© 2012 UPES Aug 2014 26

A Simple Example

#include <stdio.h>

int x=1; /* global variable /

void demo(void);

int main() {

 int y=2; /* local variable to main */

 printf ("\nBefore calling demo(), x = %d and y = %d.",x,y);

 demo();

 printf ("\nAfter calling demo(), x = %d and y = %d.\n",x,y);

 return 0;

}

void demo () {

 int x = 88, y =99; /* local variables to demo */

 printf ("\nWithin demo(), x = %d and y = %d.",x,y);

}

© 2012 UPES Aug 2014 27

Library Functions

 C standard library provides a rich collection of
functions for performing I/O operations,
mathematical calculations, string manipulation
operations etc.

 For example, sqrt(x) is a function to calculate the
square root of a double number provided by the C
standard library and included in the <math.h>
header file.

© 2012 UPES Aug 2014 28

TYPES OF FUNCTION CALLS

Call by Value:

When a function is called by an
argument/parameter which is not a pointer the
copy of the argument is passed to the function.
Therefore a possible change on the copy does not
change the original value of the argument.

© 2012 UPES Aug 2014 29

Example

Write a program to calculate and print the area and the perimeter of a circle.
Note that theradius is to be entered by the user. (Use Call by value
approach)

#include<stdio.h> /*The function calls are Call by Value*/

#define pi 3.14

float area(float);

float perimeter(float);

int main()

{

float r, a, p;

printf(“Enter the radius\n”);

scanf(“%f”,&r);

a = area(r);

p = perimeter(a);

printf(“The area = %.2f, \n The Perimeter = %.2f”, a, p);

return 0;

}

© 2012 UPES Aug 2014 30

Example

float area(float x)

{

return pi*x*x;

}

float perimeter(float y)

{

return 2.0*pi*y;

}

© 2012 UPES Aug 2014 31

TYPES OF FUNCTION CALLS

Call by Reference:

When a function is called by an
argument/parameter which is a pointer (address of
the argument) the copy of the address of the
argument is passed to the function. Therefore a
possible change on the data at the referenced
address change the original value of the argument.

© 2012 UPES Aug 2014 32

Example

Write a program to calculate and print the area and the perimeter of a
circle. Note that the radius is to be entered by the user. (Use Call by
reference approach)

#include<stdio.h> /*The function calls is Call by Reference*/

#define pi 3.14

void area_perimeter(float, float *, float *);

int main()

{

float r, a, p;

printf(“Enter the radius\n”);

scanf(“%f”,&r);

area_perimeter(r,&a,&p);

printf(“The area = %.2f, \n The Perimeter = %.2f”, a, p);

return 0;

}

© 2012 UPES Aug 2014 33

Example

void area_perimeter(float x, float *aptr,
float *pptr);

{

*aptr = pi*x*x;

*pptr = 2.0*pi*x;

}

© 2012 UPES Aug 2014 34

Library Functions

Ex:

:

 double a=9.9, b;

 b = sqrt(a);

 printf(“The square root of %f is %f”, a, b);

 :

 Other functions such as exp(x) (exponential function ex) and pow(x,y) (xy) ...
can be used as they are needed. Note that each program in C has a
function called main which is used as the root function of calling other library
functions.

© 2012 UPES Aug 2014 35

