
| Aug 2014| © 2012 UPES
1

Programming with C - Arrays & Pointers

P S V S Sridhar

Assistant Professor, Centre for Information Technology, University of Petroleum & Energy Studies,

Dehradun

© 2012 UPES Aug 2014 Aug 2014

2

Definition – Array

 A collection of objects of the same type stored

 contiguously in memory under one name

► Group of consecutive memory locations

► Same name and type

 To refer to an element, specify

► Array name

► Position number

 Format:
arrayname[position number]

► First element at position 0

► n element array named c:

– c[0], c[1]...c[n – 1]

Name of array

(Note that all

elements of this

array have the

same name, c)

Position number

of the element

within array c

c[6]

-45

 6

 0

 7

2

 -89

 0

 6

2

 1

 645

3

7

c[0]

 c[1]

 c[2]

 c[3]

c[11]

c[10]

c[9]

c[8]

c[7]

c[5]

c[4]

© 2012 UPES Aug 2014 Aug 2014

3

Examples

 int A[10]

– An array of ten integers

– A[0], A[1], …, A[9]

 double B[20]

– An array of twenty long floating point numbers

– B[0], B[1], …, B[19]

 Arrays of structs, unions, pointers, etc., are also

allowed

 Array indexes always start at zero in C

© 2012 UPES Aug 2014 Aug 2014

4

Examples (continued)

 int C[]

– An array of an unknown number of integers

(allowable in a parameter of a function)

– C[0], C[1], …, C[max-1]

 int D[10][20]

– An array of ten rows, each of which is an array of

twenty integers

– D[0][0], D[0][1], …, D[1][0], D[1][1], …,

D[9][19]

© 2012 UPES Aug 2014 Aug 2014

5

Array Element

 May be used wherever a variable of the same type may be used

– In an expression (including arguments)

– On left side of assignment

 Examples:–

A[3] = x + y;

x = y – A[3];

z = sin(A[i]) + cos(B[j]);

© 2012 UPES Aug 2014 Aug 2014

6

Array Elements (continued)

 Generic form:–

– ArrayName[integer-expression]

– ArrayName[integer-expression] [integer-

expression]

►Same type as the underlying type of the array

 Definition:– Array Index – the expression between the square

brackets

© 2012 UPES Aug 2014 Aug 2014

7

Array Elements (continued)

 Array elements are commonly used in loops

 E.g.,

for(i=0; i < max; i++)

A[i] = i*i;

sum = 0; for(j=0; j < max; j++)

sum += B[j];

© 2012 UPES Aug 2014 Aug 2014

8

Declaring Arrays

 Static or automatic

 Array size determined explicitly or implicitly

 Array size may be determined at run-time

– Automatic only

© 2012 UPES Aug 2014 Aug 2014

9

Declaring Arrays (continued)

 Outside of any function – always static

int A[13];

#define CLASS_SIZE 73

double B[CLASS_SIZE];

const int nElements = 25

float C[nElements];

© 2012 UPES Aug 2014 Aug 2014

10

Array Initialization

 int A[5] = {2, 4, 8, 16, 32};

– Static or automatic

 int B[20] = {2, 4, 8, 16, 32};

– Unspecified elements are guaranteed to be zero

 int C[4] = {2, 4, 8, 16, 32};

– Error — compiler detects too many initial values

 int D[5] = {2*n, 4*n, 8*n, 16*n, 32*n};

– Automatically only; array initialized to expressions

 int E[n] = {1};

– Dynamically allocated array (automatic only). Zeroth element
initialized to 1; all other elements initialized to 0

© 2012 UPES Aug 2014 Aug 2014

11

Implicit Array Size Determination

 int days[] = {31, 28, 31, 30, 31,

30, 31, 31, 30, 31, 30, 31};

► Array is created with as many elements as initial

values

– In this case, 12 elements

© 2012 UPES Aug 2014 Aug 2014

Multiple-Subscripted Arrays

• Multiple subscripted arrays

– Tables with rows and columns (m by n

array)

– Like matrices: specify row, then column

Row 0

 Row 1

 Row 2

Column 0

Column 1

Column 2

Column 3

 a[0][0]

a[1][0]
 a[2][0]

a[0][1]
 a[1][1]
 a[2][1]

a[0][2]
 a[1][2]
 a[2][2]

a[0][3]
 a[1][3]
 a[2][3]

Row subscript

Array name

Column subscript

© 2012 UPES Aug 2014 Aug 2014

6.9 Multiple-Subscripted Arrays

• Initialization

– int b[2][2] = { { 1, 2 }, { 3, 4 } };

– Initializers grouped by row in braces

– If not enough, unspecified elements set to zero

int b[2][2] = { { 1 }, { 3, 4 } };

• Referencing elements

– Specify row, then column

printf("%d", b[0][1]);

1 2

3 4

1 0

3 4

© 2012 UPES Aug 2014 Aug 2014

Character Arrays

When initializing a character array in ANSI C, the compiler will allow us to declare the
array size as the exact length of the string constant.
 Char string[3] = “xyz”;

 Character arrays

► String “first” is really a static array of characters

► Character arrays can be initialized using string literals

char string1[] = "first";

– Null character '\0' terminates strings

– string1 actually has 6 elements

• It is equivalent to

char string1[] = { 'f', 'i', 'r', 's', 't', '\0' };

► Can access individual characters

string1[3] is character „s‟

© 2012 UPES Aug 2014 Aug 2014

Reading Strings from Terminal

 Using Scanf

char address[10];

scanf(“%s”, address);

Terminates its input on the first white space

scanf(―%ws‖, name); // w is width of word

scanf(“%[^\n]”,line); // accept white spaces also

char ch;

ch = getchar(); // accept single character

© 2012 UPES Aug 2014 Aug 2014

 main()

 char line[81], character;

 int c=0;

 do

 {

 character = getchar();

 line[c] = character;

 c++;

 } while (character != ‗\n‘);

Reading Strings from Terminal

© 2012 UPES Aug 2014 Aug 2014

 gets(str); //accept string until a new line character is encountered

 Eg. char line[80];

 gets (line);

 printf(―%s‖,line);

Reading Strings from Terminal

© 2012 UPES Aug 2014 Aug 2014

What is a pointer variable?

• A pointer variable is a variable whose value is the

address of a location in memory.

• To declare a pointer variable, you must specify the type

of value that the pointer will point to, for example,

int* ptr; // ptr will hold the address of an int

char* q; // q will hold the address of a char

© 2012 UPES Aug 2014 Aug 2014

Using a Pointer Variable

 int x;

 x = 12;

 int* ptr;

 ptr = &x;

NOTE: Because ptr holds the address of x,

 we say that ptr “points to” x

 2000

 12

 x

3000

 2000

 ptr

© 2012 UPES Aug 2014 Aug 2014

 int x;

 x = 12;

 int* ptr;

 ptr = &x;

 *ptr = 5;

Using the Dereference Operator

 2000

 12

 x

3000

 2000

 ptr

5

// changes the value at the

 address ptr points to 5

© 2012 UPES Aug 2014 Aug 2014

 char ch;

 ch = „A‟;

 char* q;

 q = &ch;

 *q = „Z‟;

 char* p;

 p = q;

Self –Test on Pointers

 4000

 A

 ch

5000

 4000

 q

Z

6000

p

4000

// the rhs has value 4000

// now p and q both point to ch

© 2012 UPES Aug 2014 Aug 2014

 ptr

Pointers into Arrays

‘H‟ „e‟ „l‟ „l‟ „o‟ „\0‟

char msg[]

=“Hello”;

char* ptr;

ptr = msg;

*ptr = „M‟ ;

ptr++;

*ptr = „a‟;

msg

3000

3000

‘M‟ ‘a‟

3001

© 2012 UPES Aug 2014 Aug 2014

Pointers and Constants

• char s[] = ―Hello‖;

• const char* pc = s; // pointers to constant

• pc[3] = ‗g‘; // error

• pc = p; // ok

© 2012 UPES Aug 2014 Aug 2014

24

Declaring Pointers in C

int *p; — a pointer to an int

double *q; — a pointer to a double

char **r; — a pointer to a pointer to a

 char

 type *s; — a pointer to an object of

 type type

© 2012 UPES Aug 2014 Aug 2014

25

Pointer Arithmetic

 int *p, *q;

q = p + 1;

► Construct a pointer to the next integer after *p and assign it to q

 long int *p, *q;

p++; q--;

► Increment p to point to the next long int; decrement q to point to

the previous long int

 float *p, *q;

int n;

n = p – q;

► n is the number of floats between *p and *q; i.e., what would be

added to q to get p

© 2012 UPES Aug 2014 Aug 2014

Pointers & arrays

 Arrays and pointers are closely related in C

►In fact, they are essentially the same thing!

►Esp. when used as parameters of functions

int A[10];

int *p;

►Type of A is int *

►p = A; and A = p; are legal assignments

►*p refers to A[0]
*(p + n) refers to A[n]

►p = &A[5]; is the same as p = A + 5;

© 2012 UPES Aug 2014 Aug 2014

Arrays and Pointers (continued)

 double A[10]; vs. double *A;

Only difference:–

► double A[10] sets aside ten units of memory, each

large enough to hold a double

► double *A sets aside one pointer-sized unit of

memory

– You are expected to come up with the memory elsewhere!

► Note:– all pointer variables are the same size in any

given machine architecture

– Regardless of what types they point to

© 2012 UPES Aug 2014 Aug 2014

Note

 C does not assign arrays to each other

 E.g,

►double A[10];

double B[10];

A = B;

– assigns the pointer value B to the pointer value A

– Contents of array A are untouched

© 2012 UPES Aug 2014 Aug 2014

Pointers & Functions

This method called as call by reference

#include<stdio.h> /*The function calls is Call by Reference*/

#define pi 3.14

void area_perimeter(float, float *, float *);

int main()

{

 float r, a, p;

 printf(“Enter the radius\n”);

 scanf(“%f”,&r);

 area_perimeter(r,&a,&p);

 printf(“The area = %8.2f, \n The Perimeter = %8.2f”, a, p);

 return 0;

}

© 2012 UPES Aug 2014 Aug 2014

Pointer & Functions

void area_perimeter(float x, float *aptr, float

*pptr)

{

 *aptr = pi*x*x;

 *pptr = 2.0*pi*x;

}

© 2012 UPES Aug 2014 Aug 2014

Passing an Arrays to Function

 When an array is passed to a function what is actually passed is its initial elements location

in memory. i.e., the address of an initial element

main()

{

 char str[20];

 int len;

 gets(str);

 len = stringlen(str);

 printf(―%d‖, len);

}

int stringlen(char *s)

{ char *p = s;

 while(*p != ‗\0‘)

 p++;

 return p-s;

}

© 2012 UPES Aug 2014 Aug 2014

Dynamic Memory Allocation (Malloc, Calloc, Sizeof,
Free)

C provide the concept of dynamic memory

allocation to allocate memory space for variable at

run time.

C allows users to dynamically allocate memory by

malloc() and calloc() functions

 sizeof() which determines how much memory a

specified variable

 free() de-allocates the memory assigned to a

variable

© 2012 UPES Aug 2014 Aug 2014

sizeof()

struct date

{

int hour;

int minute;

int second;

};

int x;

x = sizeof(struct date);

x now contains the information required by calloc()

© 2012 UPES Aug 2014 Aug 2014

Malloc()

 This function is used to allocate storage to a variable while the program

is running.

 This function takes an argument that specifies the size of each element

in bytes.

 The function returns a character pointer to the allocated storage, which is

initialized to zero

struct date *date_pointer;

date_pointer = (struct date *) malloc sizeof(struct date);

The (struct date *) is a type cast operator which

converts the pointer returned from malloc to a

character pointer to a structure of type date.

© 2012 UPES Aug 2014 Aug 2014

Calloc()
 This function is also used to allocate storage to a variable while the

program is running.

 This function takes two arguments that specify the number of elements

to be reserved.

 The size of each element obtained from sizeof()

 The function returns a character pointer to the allocated storage, which is

initialized to zero

struct date *date_pointer;

date_pointer = (struct date *) calloc(20, sizeof(struct date);

The above function call will allocate size for

twenty such structures, and date_pointer will

point to first in the chain.

© 2012 UPES Aug 2014 Aug 2014

Free()

 When variables are no longer required, the memory will be released

by free()

 free(date_pointer);

© 2012 UPES Aug 2014 37

