
| Aug 2014| © 2012 UPES

Programming with C –
Introduction

© 2012 UPES Aug 2014 Aug 2014

PROGRAMMING FUNDAMENTALS

2

© 2012 UPES Aug 2014 Aug 2014
3

Introduction to Problem Solving

Problem solving is the process of transforming

the description of a problem into a solution by

using our knowledge of the problem domain

and by relying on our ability to select and use

appropriate problem-solving strategies,

techniques and tools.

Computers can be used to help us solving

problems

© 2012 UPES Aug 2014 Aug 2014
4

Software Development Method (SDM)

1. Specification of needs

2. Problem analysis

3. Design and algorithmic representation

4. Implementation

5. Testing and verification

6. Documentation

© 2012 UPES Aug 2014 Aug 2014
5

Specification of Needs

To understand exactly:

►what the problem is

►what is needed to solve it

►what the solution should provide

►if there are constraints and special conditions.

© 2012 UPES Aug 2014 Aug 2014
6

Problem Analysis

 In the analysis phase, we should identify the following:

►Inputs to the problem, their form and the input

media to be used

►Outputs expected from the problem, their form

and the output media to be used

►Special constraints or conditions (if any)

►Formulas or equations to be used

© 2012 UPES Aug 2014 Aug 2014
7

Design and Algorithmic Representation

 An algorithm is a sequence of a finite number of steps arranged in a

specific logical order which, when executed, produces the solution for

a problem.

 An algorithm must satisfy these requirements:

►It may have an input(s)

►It must have an output

►It should not be ambiguous (there should not
be different interpretations to it)

– Every step in algorithm must be clear as what it is
supposed to do

© 2012 UPES Aug 2014 Aug 2014
8

Pseudocodes

 A pseudocode is a semiformal, English-like language with limited

vocabulary that can be used to design and describe algorithms.

 Criteria of a good pseudocode:

►Easy to understand, precise and clear

►Gives the correct solution in all cases

►Eventually ends

© 2012 UPES Aug 2014 Aug 2014
9

Pseudocodes: The Sequence control structure

 A series of steps or statements that are executed in the

order they are written in an algorithm.

 The beginning and end of a block of statements can be

optionally marked with the keywords begin and end.

 Example 1:

 Begin

 Read the birth date from the user.

 Calculate the difference between the

 birth date and today’s date.

 Print the user age.

 End

© 2012 UPES Aug 2014 Aug 2014
10

Pseudocodes: The Selection control structure
 Defines two courses of action depending on the outcome

of a condition. A condition is an expression that is, when

computed, evaluated to either true or false.

 The keyword used are if and else.

 Format:

 if condition

 then-part

 else

 else-part

 end_if

Example 2:

if age is greater than 55

 print “Pencen”

else

 print “Kerja lagi”

end_if

© 2012 UPES Aug 2014 Aug 2014
11

Pseudocodes: The Selection control structure
 Sometimes in certain situation, we may omit the else-part.

if number is odd number

 print “This is an odd number”

end_if

 Nested selection structure: basic selection structure that contains

other if/else structure in its then-part or else-part.

 if number is equal to 1

 print “One”

 else if number is equal to 2

 print “Two”

 else if number is equal to 3

 print “Three”

 else

 print “Other”

 end_if

Example 3

Example 4

© 2012 UPES Aug 2014 Aug 2014
12

Pseudocodes: The Repetition control structure

 Specifies a block of one or more statements that are repeatedly

executed until a condition is satisfied.

 The keyword used is while.

 Format:

 while condition

 loop-body

 end_while

© 2012 UPES Aug 2014 Aug 2014
13

Pseudocodes: The Repetition control structure

 Example 5: Summing up 1 to 10

 set cumulative sum to 0

 set current number to 1

 while current number is less or equal to 10

 add the cumulative sum to current number

 add 1 to current number

 end_while

 print the value of cumulative sum

© 2012 UPES Aug 2014 Aug 2014
14

Pseudocodes: The Repetition control structure

 Subsequently, we can write the previous pseudocodes (example 5)

with something like this.

 Example 6: Summing up 10 numbers

 cumulative sum = 0

 current number = 1

 while current number is less or equal to 10

 cumulative sum = cumulative sum + current number

 current number = current number + 1

 end_while

 print the value of cumulative sum

 Note that in this algorithm, we are using both the sequence and

repetition control structure

© 2012 UPES Aug 2014 Aug 2014
15

Pseudocodes: The Repetition control structure

 Example 7:

Begin

 number of users giving his birth date = 0

 while number of users giving his birth date < 10

 begin

 Read the birth date from the user.

 Calculate the difference between the birth
date and today’s date.

 Print the user age.

 if the age is greater than 55

 print “Pencen”

 else

 print “Kerja lagi”

 end_if

 number of user giving his birth date + 1

 end

 end_while

End

© 2012 UPES Aug 2014 Aug 2014
16

Pseudocodes: The Repetition control structure

 Example 8:

while user still wants to play

 begin

 Select either to play on network or play against computer

 if play on network

 create connection to remote machine

 play game with connected computer

 else

 select mission

 play game locally

 end_if

 Ask user whether he/she still wants to play

end

end_while

© 2012 UPES Aug 2014 Aug 2014
17

Pseudocodes: The Repetition control structure

 Example 9:

while user still wants to play

begin

Select either to play on network or play against computer

if play on network

create connection to remote machine

play game with connected computer

Else

select mission

play game locally

end_if

Ask user whether he/she still wants to play

end

end_while

 For readability, always use proper indentation!!!

© 2012 UPES Aug 2014 Aug 2014
18

Flowcharts

 Flowcharts is a graph used to depict or show a step by step solution

using symbols which represent a task.

 The symbols used consist of geometrical shapes that are connected

by flow lines.

 It is an alternative to pseudocoding; whereas a pseudocode

description is verbal, a flowchart is graphical in nature.

© 2012 UPES Aug 2014 Aug 2014
19

Terminal symbol - indicates the beginning and

end points of an algorithm.

Process symbol - shows an instruction other than

input, output or selection.

Input-output symbol - shows an input or an output

operation.

Disk storage I/O symbol - indicates input from

or output to disk storage.

Printer output symbol - shows hardcopy printer

output.

Flowchart Symbols

Terminal symbol - indicates the beginning and

end points of an algorithm.

Process symbol - shows an instruction other than

input, output or selection.

Input-output symbol - shows an input or an output

operation.

Disk storage I/O symbol - indicates input from

or output to disk storage.

Printer output symbol - shows hardcopy printer

output.

© 2012 UPES Aug 2014 Aug 2014
20

Selection symbol - shows a selection process

for two-way selection.

Off-page connector - provides continuation

of a logical path on another page.

On-page connector - provides continuation

of logical path at another point in the same

page.

Flow lines - indicate the logical sequence of

execution steps in the algorithm.

Flowchart Symbols cont…

Selection symbol - shows a selection process

for two-way selection.

Off-page connector - provides continuation

of a logical path on another page.

On-page connector - provides continuation

of logical path at another point in the same

page.

Flow lines - indicate the logical sequence of

execution steps in the algorithm.

© 2012 UPES Aug 2014 Aug 2014
21

Statement 2

 Statement 1

 Statement 3

:

Flowchart – sequence control structure

Statement 2

 Statement 1

 Statement 3

:

© 2012 UPES Aug 2014 Aug 2014
22

Condition

else-

statement(s)

then-

statement(s)

Yes No

Flowchart – selection control structure

Condition

else-

statement(s)

then-

statement(s)

Yes No

© 2012 UPES Aug 2014 Aug 2014
23

Condition
Loop

Statement(s)

yes

no

Flowchart – repetition control structure

Condition
Loop

Statement(s)

yes

no

© 2012 UPES Aug 2014 Aug 2014
24

Flowchart – example 1

Begin

Read birth date

Calculate

Age = current year – birth date

Display

age

End

© 2012 UPES Aug 2014 Jul 2012

Flowchart – example 2

Begin

Read age

End

Age > 55? NO YES

print “Pencen” print “Kerja lagi”

© 2012 UPES Aug 2014 Jul 2012
26

Flowchart – example 5

Begin

End

current_number <= 10?

NO

YES

sum = 0

current_number = 1

sum = sum + current_number

current_number = current_number + 1

print sum

© 2012 UPES Aug 2014 Aug 2014
27

Implementation

 The process of implementing an algorithm by writing

a computer program using a programming language

(for example, using C language)

 The output of the program must be the solution of the

intended problem

 The program must not do anything that it is not

supposed to do

► (Think of those many viruses, buffer overflows, trojan

horses, etc. that we experience almost daily. All these

result from programs doing more than they were

intended to do)

© 2012 UPES Aug 2014 Aug 2014
28

Testing and Verification

 Program testing is the process of executing a program to

demonstrate its correctness

 Program verification is the process of ensuring that a program meets

user-requirement

 After the program is compiled, we must run the program and

test/verify it with different inputs before the program can be released

to the public or other users (or to the instructor of this class)

© 2012 UPES Aug 2014 Aug 2014
29

Documentation

 Contains details produced at all stages of the

program development cycle.

 Can be done in 2 ways:

► Writing comments between your line of codes

► Creating a separate text file to explain the program

 Important not only for other people to use or modify

your program, but also for you to understand your

own program after a long time (believe me, you will

forget the details of your own program after some

time ...)

© 2012 UPES Aug 2014 Aug 2014
30

Documentation cont…

 Documentation is so important because:

► You may return to this program in future to use the whole
of or a part of it again

► Other programmer or end user will need some information
about your program for reference or maintenance

► You may someday have to modify the program, or may
discover some errors or weaknesses in your program

 Although documentation is listed as the last stage of
software development method, it is actually an
ongoing process which should be done from the very
beginning of the software development process.

© 2012 UPES Aug 2014 Jul 2012

C Introduction

31

The C programming language was designed by
Dennis Ritchie at Bell Laboratories in the early
1972

Influenced by

ALGOL 60 (1960),

CPL (Cambridge, 1963), -

BCPL (Martin Richard, 1967), - Basic Combined
Programming Language

B (Ken Thompson, 1970)

Procedural language also known as structured
programming

Standardized in 1989 by ANSI (American National
Standards Institute) known as ANSI C

© 2012 UPES Aug 2014 Aug 2014

DATA TYPES

• Integer data type

– Short integer(short) 2 bytes -32,768 to +32,767

– Integer(Int) 4 bytes -2,147,483,648 to +2,147,483,647

– Long Integer(long) 4 bytes -2,147,483,648 to +2,147,483,647

Integer data types again classified into signed and unsigned.
Signed can store -ve values. Unsigned can store +ve values

• Floating point data type

– float 4 bytes 3.4e-38 to 3.4e+37

– double 8 bytes 17e-308 to 1.7e+308

– Long double 10 bytes

• Character data type

– signed char(char) 1 byte -128 to +127

– Unsigned char 1 byte 0 to 255

32

© 2012 UPES Aug 2014 Aug 2014

User defined data type declaration

 To define user define data type:

typedef type identifier;

Where typedef is a keyword

 type is data type

 identifier is a new name

Eg., typedef int integer;

 tyedef float real;

 integer num1, num2;

 real avg, per;

The advantage of typedef is that we can create meaningful

data type names for increasing readability of the program

© 2012 UPES Aug 2014 Aug 2014

User defined data type declaration

 Another user defined data type is enumerated data type:

enum identifier{ value1, value2, …….. Valuen};

Where enum is keyword

Identifier is a new name

Value1, value2, ……. Valuen are different values

Compiler automatically assign integer values starting from 0

Eg., enum day{mon, tue, wed, thu, fri, sat, sun};

 i.e., mon =0, tue = 1, wed = 2, ….. Sun = 6

You can also override the values like

enum day{mon =1, tue, wed, thu, fri, sat, sun};

i.e., mon = 1, tue = 2, …….. Sun = 7

© 2012 UPES Aug 2014 Aug 2014

Standard Input / Output in C

 C has a notation of input coming from a place known as standard input and

output goes to a place known as standard output

 stdin stdout standard I/O functions. Predefined streams automatically

opened when the program is started.

 For Input/output functionality need to add #include<stdio.h>

© 2012 UPES Aug 2014 Aug 2014

Standard Input / Output in C

 Some standard functions are defined in C programming for stdin

and stdout are

 getchar(), putchar(), getc(), putc()

 getchar() retrieves a single character from standard input

 Eg., char c= getchar();

 This function return value will be one of the next input character

 putchar() sends a single character to standard output

 Eg., putchar(c);

 The character to be output is passed as a parameter.

 Functions getc(), putc() are much same.

 Eg: c = getc(stdin); putc(c,stdout);

© 2012 UPES Aug 2014 Aug 2014

Standard Input / Output in C

The mentioned functions are for single character

I/O

 <stdio.h> gives a access printf(), scanf() functions

 printf() is a function that converts formats and prints the arguments on a

standard output

 Eg., printf(“The value of x is %d, and value of y is %d\n”,x,y);

 The output will appear as: If x is 10, y is 5

 The value of x is 10 and value of y is 5

 d to print decimal number

 c to print character s to print string

 x to print hexadecimal

© 2012 UPES Aug 2014 Aug 2014

Standard Input / Output in C

 Eg:

#include<stdio.h>

main()

{

 int x = 5000;

 printf(%d\n”, x);

 printf(%10d\n”,x);

}

Output is

5000

6spaces and 5000 (will be printed as right alignment with 10 spaces)

© 2012 UPES Aug 2014 Aug 2014

Standard Input / Output in C

 scanf() is similar to printf(), but it reads input.

scanf(“%d”, &x); x is an integer

scanf(“%f”, &y); y is a real

scanf(“%c”, &z); z is a character

scanf(“%s”, &u); u is a word

© 2012 UPES Aug 2014 Aug 2014

Basic Operators

 The precedence rules of operator are:

 () *,/ +,-

 In addition to arithmetic (*,/,+,-) operators % for modulus

© 2012 UPES Aug 2014 Aug 2014

Assignement operators

 Assignment operator to assign the value of a variable or expression

 var = expression; var = var;

• C support short hand format of assignment operators +=, -=, *=, /=,

%=

41

© 2012 UPES Aug 2014 Aug 2014

Bitwise operators

 Bitwise AND (&):

► For integral types, ANDs each corresponding
pair of bits

– 0 & 0 == 0
0 & 1 == 0
1 & 0 == 0
1 & 1 == 1

– Eg., d1=4 and d2 = 6

– The binary representation of d1 is 0000000000000100

– The binary representation of d2 is 0000000000000110

– d1 & d2 is 0000000000000100

– i.e., 4

42

© 2012 UPES Aug 2014 Aug 2014

 Bitwise OR (|):

► For integral types, ORs each corresponding pair

of bits

 0 | 0 == 0

0 | 1 == 1

1 | 0 == 1

1 | 1 == 1

Eg., d1 is 4 and d2 is 6. d1|d2 is 6

Bitwise XOR (^):

►For integral types, XORs each corresponding pair

of bits

– 0 ^ 0 == 0 0 ^ 1 == 1 1 ^ 0 == 1 1 ^ 1 == 0

– Eg., d1 is 4 and d2 is 6. d1^d2 is 2

43

Bitwise operators

© 2012 UPES Aug 2014 Aug 2014

 Bitwise Complement (~):

 Bitwise complement (~) is an unary operator. It can be defined by replacing

0 by 1 and 1 by 0.

 eg., d1 is 4

 4 is in binary 0000000000000100

 complement of d1 is 111111111111011

44

Bitwise operators

© 2012 UPES Aug 2014 Aug 2014

 Left shift (<<):

 It is a binary operator. In this operator the second operand specifies the

number of bits position to be shifted in the left of the first operand. Add 0 in

the right position of shifted bits.

 Eg., d1 is 4 means 0000000000000100

 d1<<2 means 0000000000010000 = 16

• Right shift (>>):

Add 0 in the left position of the shifted bits.

Eg., d1 is 4 means 0000000000000100

 d1 >> 2 means 0000000000000001 = 1

45

Bitwise operators

© 2012 UPES Aug 2014 Aug 2014

Increment & decrement operators

 ++ and --

 Eg., ++ count ; /* prefix */

 count --; /* postfix */

 Eg., x = 10;

 y = ++x; y = 11

 y = x++; y = 10

 y = --x; y = 9

 y = x--; y = 10

(* Not mixed all the statements. Each is taken as separate)

46

© 2012 UPES Aug 2014 Aug 2014

Relational operators

 == equal to != not equal to

 < less than <= less than equal

 > greater than >= greater than equal

47

© 2012 UPES Aug 2014 Aug 2014

Logical operators

 Negation !

 Logical AND &&

 Logical OR ||

 Order of precedence is !, &&, ||

48

© 2012 UPES Aug 2014 Aug 2014

Ternary operator or Conditional operator

 (condition) ? Expression 1 : expression 2

 Eg., value = (x < 0) ? -1 : x +5

 If x is less than 0 then value = -1

 If x is greater than 0 then value = x +5

49

© 2012 UPES Aug 2014 Aug 2014

Thanks

50

